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Nonlinear Modeling and Symbolic Processes
How does chaos generate randomness?

Systematic and rigorous method for converting a continuous dynamical system into a
fully-discrete, i.e. symbolic, stochastic process. 2 / 28



Nonlinear Modeling and Symbolic Processes

Symbolic processes are the objects traditionally modeled by computational mechanics,

Studied through ε-machines

Unique minimal sufficient statistic of past for predicting the future,
generated by causal equivalence relation:

pasti ∼ε pastj ⇐⇒ Pr(Future|pasti) = Pr(Future|pastj)

I optimal prediction
I (causal) structure, organization
I directly calculate entropy rate
I process memory and complexity

3 / 28



Nonlinear Modeling and Symbolic Processes

When does nonlinear modeling work? – generating partitions

discrete-time dynamical system (Ω,Φ : Ω→ Ω) – e.g. Poincare Map

ωn+1 = Φ(ωn)

partition phase space with measurement function GP : Ω→ A

Pi ∩ Pj = ∅ and
⋃N
i=0 Pi = Ω, and each partition carries unique symbol a ∈ A

{ω0, ω1, ω2, . . .} becomes {a0, a1, a2, . . . } = {GP(ω0), GP (Φ(ω0)) , GP
(
Φ2(ω0)

)
, . . . }.
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Nonlinear Modeling and Symbolic Processes
GP ◦ Φ induces partition Φ−1P over Ω ; (Φ−1P)i is set of all ω ∈ Ω s.t. GP

(
Φ(ω)

)
∈ Pi

each time step induces new Φ−nP whose elements are ω ∈ Ω s.t. GP
(
Φn(ω)

)
∈ Pi

partition refinement P ∨Q = {Pi ∩Qj : Pi ∈ P and Qi ∈ Q} also a partition

first dynamical refinement of P under Φ is P ∨ Φ−1P,
maps point ω ∈ Ω to two-symbols a0a1 ∈ A×A

the full dynamical refinement of P under Φ is P ∨ Φ−1P ∨ Φ−2P ∨ Φ−3P · · · ,
maps point ω ∈ Ω to infinite-length symbol sequence A×A×A× · · ·

a generating partition is a partition P s.t. the full dynamical refinement is a.e. one-to-one
between points ω ∈ Ω and infinite-length symbol sequences—volume of partition
elements goes to 0 for full dynamical refinement
A.N. Kolmogorov, Russian Academy of Sciences (1959), Y.G. Sinai Russian Academy of Sciences (1959)

5 / 28



Generating Partition of
Logistic Map

GP(x) =
{
a 0 ≤ ω ≤ 0.5
b 0.5 ≤ ω ≤ 1

ωn

ωn+1

1

1

0.5

P a b

Φ−1P a b a

P ∨ Φ−1P a
a

a
b

b
b

b
a

Φ(ω) = 4ω(1− ω)
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Kolmogorov-Sinai Entropy: Randomness from Chaos
entropy of partition (in terms of invariant distribution over partition elements)

H(P) = −
∑
i

Pr(Pi) log Pr(Pi)

entropy rate

hν(Φ,P) = lim
N→∞

1
N
H

( N∨
n=0

Φ−nP
)

Kolmogorov-Sinai (metric) entropy
hν(Φ) = sup

P
hν(Φ,P)

achieved for generating partitions—provides variational principle for approximation
(asymptotic distribution over Pi limits to invariant density f∗ of Φ for generating P)

Pesin’s theorem: relation to positive Lyapunov exponents

hν(Φ) ≤
∑
λi>0

λi
Y. Pesin. (1977) Russian Math Surveys
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Nonlinear Modeling and Symbolic Processes
Symbolic process is a shift dynamical system (AZ, σ) under shift operator

for two symbol sequence x, y ∈ AZ, y = σ(x) ⇐⇒ yi = xi+1 for all i ∈ Z,
i.e. σ advances observation time index forward

ωn ∈ Ω

System

x0 ∈ A

Measurement Symbol

GP : Ω→ A · · ·x−2x−1x0x1x2 · · ·

Symbol Sequence

0

ωn+1 = Φ(ωn)

Φ

y0 = x1 ∈ A
GP : Ω→ A · · · y−2y−1y0y1y2 · · ·

σ

0

Converted nonlinear dynamical system into (symbolic) measurement process governed by
*linear*, infinite-dimensional operator σ that advances observation time
D. Lind and B. Marcus (1995) Cambridge University Press
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Systems, Data, and Models
Advantages of nonlinear modeling:
I symbolic processes allow for discrete information and computation theory
I clean and rigorous framework for information storage, generation, and processing
I interpretability of system structure and organization through ε-machines

Challenges:
I even for idealized systems, generating partitions hard to find (e.g. Henon map)
I for a given physical system, don’t have full control of system measurements
I scalability of inference and interpretability for large alphabets

generalize to continuum setting using Koopman and Perron-Frobenius Operators
A. Lasota and M. C. Mackey (2013). Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics. Springer
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System: ω0 ∈ Ω Observations: x0 = X(ω0)

X : Ω→ X

Credit: NASA–Apollo 17 crew

Φt U t

X : Ω→ X

Xt : Ω→ X = U tX

= X ◦ Φt
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Systems and Data

The “true” physical system described by dynamical system (Ω,ΣΩ, ν,Φ):

I phase space Ω is complete metric space (typically Rd or d-dimensional manifold)
I ΣΩ a σ-algebra (Borel sets)
I ν a reference measure (Borel or Lebesgue)—phase space volume
I Φ the generator of (semi)group of measurable flow maps {Φt : Ω→ Ω}

Φ = lim
τ→0

1
τ

(
Φt(ω)− Φt+τ (ω)

)
I orbits {ω(t) : t ∈ R(≥0)} continuous in time
I discrete intervals are bounded ||Φt+δ(ω0)− Φt(ω0)|| < ε
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Systems and Data
The “observed” or “measured” system is measurable space (X ,ΣX )

Observable x ∈ X generated by the dynamical system under the measurable mapping
X : Ω→ X so that xt = X(ωt)

Generally interested in partially-observable systems, for which X is not invertible:
knowledge of x insufficient for determining state ω of the true system
=⇒ there are “unobservable” or “immeasureable” degrees of freedom in ω

Will later consider a second set of observables (Y,ΣY) that are also given as a (generally
non-invertible) measurable map Y : Ω→ Y s.t. yt = Y (ωt).

X (and Y ) represent “windows” through which we can view true physical system, but
can never have a full view with X = Ω

Asymptotic behavior of ω may be reconstructable from x: delay-coordinate embedding
N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw (1980) F. Takens (1981)
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Koopman Operators
system “observable” f : Ω→ C, element of a function space (typically L∞(Ω, ν) or L2(Ω, ν))

Koopman operators {U t : F → F} evolve observables through composition with Φt

U tf = f ◦ Φt

ft(ω) ≡ f
(
Φt(ω)

)
= U tf(ω)

linear, infinite-dimensional operators whose action on observable f ∈ F gives the time
shifted observable (function) ft = U tf

Inherits (semi)group structure of {Φt} s.t. U t ◦ U∆t = U t+∆t and generated by

Uf = lim
t→0

1
t

(
U tf − f

)
X (and Y ) vector-valued observables, i.e. Xi = f , evolved by product operator U t
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Dynamical Processes
observables may be collected in a time series {x0, x1, . . . , xT−1}—a time-ordered
sequences of “measurements” of x taken at uniform time intervals.

a dynamical process is bi-infinite time series of observables {. . . , x−2, x−1, x0, x1, x2, . . . }

* for non-invertible dynamics, index is “observation time”

in terms of Koopman operators:

xt = X(ωt) = X
(
Φt(ω0)

)
= Xt(ω0) = U tX(ω0)

Goal of dynamical process modeling: infer or approximate action of U on observables X

{x0, x1, x2, x3, . . . } = {U0X(ω0), U1X(ω0), U2X(ω0), U3X(ω0)}

(finite) reconstructability: X in finite invariant subspace U s.t. U tX ∈ U for all t
S. L. Brunton, B. W. Brunton, J. L. Proctor, and J. N. Kutz (2016). PloS One
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Perron-Frobenius Operators
Rather than evolve observables, Perron-Frobenius operators P t : L1(Ω, ν)→ L1(Ω, ν)
evolve densities f ∈ L1(Ω, ν): f ≥ 0 and ||f || = 1.

ft = P tf∫
S
P tfdν =

∫(
Φt
)−1

(S)
fdν for S ∈ ΣΩ

May also consider P t evolving L2(Ω, ν) measures µ: µt = P tµ

relation to densities through Radon-Nikodym:

µf (S) =
∫
S
fdν and f = dµf

dν

P t : L1 → L1 adjoint of U t : L∞ → L∞ and P t : L2 → L2 adjoint of U t : L2 → L2

〈P tf, g〉 = 〈f, U tg〉
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Stochastic Processes
Can now formulate continuous stochastic processes generated by dynamical systems

I dynamical system (Ω,ΣΩ, ν,Φ) with initial probability density (ensemble) f0
I density at time t is ft = P tf0 =⇒ probability measure µt(S) =

∫
S ftdν

I at time t have probability space (Ω,ΣΩ, µt) =⇒ observable map X : ωt 7→ xt now
defines random variable Xt

I Xt distributed according via pushforward µXt (SX ) = µt
(
X−1(SX )

)
for SX ∈ ΣX

pr(Xt ∈ SX ) =
∫
SX
dµXt =

∫
X−1(SX )

dµt =
∫
X−1(SX )

ft dν =
∫
X−1(SX )

P tf0 dν

Therefore, an initial density f0 on a dynamical system (Ω,ΣΩ, ν,Φ) produces continuous
stochastic process {X0, X1, X2, . . . }
random variables are actually X(t, ω); for fixed ω a sample path given by t 7→ X(t, ω),
here are (continuous) dynamical processes {x0, x1, x2, . . . }
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Connection to Symbolic Processes: Koopman
symbolic process:
{ω0, ω1, ω2, . . . } → {a0, a1, a2, . . . } = {GP(ω0), GP(Φ(ω0)), GP(Φ2(ω0)), . . . }

dynamical process:
{ω0, ω1, ω2, . . . } → {x0, x1, x2, . . . } = {U0X(ω0), U1X(ω0), U2X(ω0), . . . }

Logistic map:

Partition isomorphic to generating partition given by

GP(x) =
{

0 0 ≤ x ≤ 0.5
1 0.5 ≤ x ≤ 1

GP(x) generally given as sum of labeled indicator functions for partition elements Pi :

GP(x) =
N−1∑
i=0

i1Pi , N = ||P||

1Pi =
{

1 x ∈ Pi
0 x /∈ Pi 17 / 28



Connection to Symbolic Processes: Koopman

GP(ω) =
{

0 0 ≤ ω ≤ 0.5
1 0.5 ≤ ω ≤ 1

U1GP(ω) = GP
(
Φ(ω)

)
= Φ−1P

U1GP(ω) =

1 1−
√

1
2

2 ≤ ω ≤ 1+
√

1
2

2
0 otherwise

ωn

ωn+1

1

0.5

GP(ω) 0 1

U1GP(ω) 0 1 0

Φ(ω) = 4ω(1 − ω)
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Connection to Symbolic Processes: Perron-Frobenius
reference measure vs invariant measure

if reference measure is invariant, constant density f = 1 is stationary: P t1 = 1

for logistic map with Borel / Lebesgue reference measure:

P 11 = 1
2
√

1− ω

=⇒ Borel measure not invariant

invariant measure µ∗ found from solving P 1f∗ = f∗:

µ∗(S) =
∫
S
f∗dω =

∫
S

dω

π
√
ω(1− ω)

Ulam and von Neumann (1947)
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Connection to Symbolic Processes: Perron-Frobenius
reference measure vs invariant measure

consider uniform density on P1
(
Pr(a0 = 1) = 1

)
and its evolved density

f(ω) =
{

0 0 ≤ ω ≤ 0.5
2 0.5 ≤ ω ≤ 1

P 1f(ω) = 1
2
√

1− ω

with Borel reference measure:

Pr(a1 = 1) = 2
∫ 1+
√

1
2

2

1
2

dω =
∫ 1

1
2

dω

2
√

1− ω
=
√

1
2

with invariant reference measure:

Pr(a1 = 1) = 2
∫ 1+
√

1
2

2

1
2

dµ∗ = 2
∫ 1+
√

1
2

2

1
2

dω

π
√
ω(1− ω)

= 1
2
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Ergodicity
Typical to consider measure-preserving dynamical system (Ω,ΣΩ, ν,Φ) with Φν = ν

Assumes a stationary stochastic process: pr(Xt ∈ SX ) = pr(X0 ∈ SX ) for all t

This corresponds to dynamics on an attractor, but want to consider more general
dynamics that include transient relaxation to the attractor

We do this using ergodic components, which correspond to basins of attraction (including
the attractor itself)

A dynamical system (Ω,ΣΩ, ν,Φ) is ergodic if ν(S) = 0 or ν(S) = 1 for every
invariant set S : Φ−1(S) = S
=⇒ all invariant sets are trivial subsets of Ω and we must study Φ on the entire space Ω

*** Note ergodicity is independent of measure preservation—but they are often assumed together
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Attractors and Basins

invariant set : Φ−1(S) = S
forward-invariant set : ω0 ∈ S =⇒ Φt(ω0) ∈ S for all t

an invariant set is necessarily forward-invariant, but converse not true

An attractor of (Ω,ΣΩ, ν,Φ) is a set A ∈ ΣΩ with
I A is a forward-invariant set of Ω under Φ
I there exists an open set B ⊃ A, call the basin of attraction of A, s.t. for every ω ∈ B

lim
t→∞

Φt(ω) ∈ A, and
I there is no proper subset of A with the first two properties

Attractors are not Φ-invariant, but basins are Φ-invariant

Can define basins as limit of pre-images of attractor: B = lim
t→∞

(
Φt
)−1

A
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Attractor Basins as Ergodic Components
Multi-stable dynamical systems with multiple attractors can be partitioned: each basin
may be treated independently since, by definition, orbits never cross basin boundaries

Without loss of generality, will from here out consider systems that either:
I have one attractor with Ω as basin
I independently consider ergodic components: reduced systems with Ω = B

System (Ω,ΣΩ, ν,Φ) considered this way is thus ergodic

Asymptotic behavior on the attractor:
I ergodicity guarantees P t has unique invariant density f∗ : P tf∗ = f∗

I this defines asymptotic invariant measure µ∗(S) =
∫
S f
∗dν

I ergodic theorem: time averages equal phase space averages

lim
n→∞

1
n

n−1∑
k=0

f
(
Φk(ω)

)
= 1
µ∗(Ω)

∫
Ω
f(ω)dµ∗

23 / 28



The Prediction Problem
We set up a general prediction problem for dynamical processes as follows:

For a physical system (Ω,ΣΩ, ν,Φ) let the observable X : Ω→ X represent the collection
of all possible measurements that can be made of the system.

Let Y : Ω→ Y represent “variables of interest”
* typically Y ⊆ X , but variables of interest may not be adequately measurable, in which case Y * X

* variables in X that are not in Y are sometimes called exogeneous

From definitions / assumptions, the physical system (Ω,ΣΩ, ν,Φ) generates the true
dynamical processes (indices again correspond to observation time)

{. . . , x−2, x−1, x0, x1, x2, . . . }
{. . . , y−2, y−1, y0, y1, y2, . . . }
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The Prediction Problem

Denote past random variable ←−X = {. . . , X−2, X−1, X0} with realizations
←−x = {. . . , x−2, x−1, x0} represent observed series of measurements up to present time t0

Similarly denote future random variable −→Y τ = {Y1, Y2, Y3, . . . , yτ} with realizations
−→y τ = {y1, y2, y3, . . . , yτ} represent future values of variables of interest to lead time τ

deterministic prediction problem: find target function Tτ that maps ←−x to −→y τ

minimize ||Tτ ◦←−x − U τY ||L2(ν)

R. Alexander and D. Giannakis, Physica D: Nonlinear Phenomena (2020)

probabilistic prediction problem: find conditional distribution pr(−→Y τ |
←−
X =←−x )
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Predictive Models of Dynamical Processes
Model dichotomy:

myopic models—learn target functions for finite τ (and finite-length pasts)
I (N)ARIMA(X)
I Analogue forecasting
I Neural networks (e.g. LSTM, TCN, RC, etc.)

process models—generative models that approximate U (i.e. lim τ →∞)

I approximate action of U with surrogate dynamical system Φ̃α : X → X
I numerical simulations with discretization X and approximation scheme α
I complex physics simulations with analysis/assimilation X̃ from measurements X

with parameterizations α
I reduced-order models (ROMS)
I (generalized) Galerkin approximations of U
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Example: Earth System
System

Observations

X : Ω → X

“data image”

Simulation

X̃

(analysis / assimilation)

Credit: NASA–Apollo 17 crew

Φt

Credit: WMO

U t

X : Ω → X

Credit: Tapio Schneider/Kyle Pressel/Momme Hell/Caltech

Φ̃tα

Xt = U tX

X̃
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Galerkin Approximations
EDMD: project U t onto finite subspace spanned by dictionary Ψ = [ψ1, . . . , ψk]T

ω0 ∈ Ω

System

x0 = X(ω0)

Observations

X : Ω → X
[ψ1(x0), . . . , ψk(x0)]T

Galerkin Approximation

Ψ

ωt = Φt(ω0)

Φt

xt = X(ωt)

U t

X : Ω → X

[Utψ1(x0), . . . ,Utψk(x0)]T

[ψ1(xt), . . . , ψ
k(xt)]

T

Ut

Ψ

minimize

Xt = U tX

M. O. Williams, I. G. Kevrekidis, and C. W. Rowley (2015). Journal of Nonlinear Science
S. Klus, P. Koltai, and C. Schütte (2016). Journal of Computational Dynamics 28 / 28


